
Achieving Perlmutter Readiness for the Synergia 

Accelerator Modeling Framework with Kokkos
Eric G. Stern, Qiming Lu, Marc Paterno, James Amundson

NUG2020 Lightning Session

17 Aug 2020



• C++ library with Python wrappers to perform particle-in-cell accelerator simulations.

– Most simulations are written in Python and import modules to perform the heavy 

calculation. Main processing loop is in C++.

• Uses MPI/OpenMP parallel processing to scale to large problems.

• Runs on Desktop/laptop, small/medium clusters, supercomputers including 

NERSC/Cori.

– Small problems can be run on small systems (number of particles, size of accelerator, etc.)

– Code scales well for large problems on large systems.

Synergia Modeling Framework

08/17/2020 Eric Stern | NUG2020 Lightning Session2



Synergia computational ingredients

3

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

x p_x

6.336E-03 -5.766E-04

-1.624E-03 8.303E-05

1.401E-03 -3.008E-04

Particle array

Proc 0 Proc 1 Proc 2 Proc 3

parallel for

local ρ local ρlocal ρ local ρHistogram

Σparallel sum

apply E apply Eapply E apply E

Redundant field solve 
parallel within each node to 
avoid communication, uses 
FFTs

parallel for

𝑓(𝑥, 𝑝) 𝑓(𝑥, 𝑝) 𝑓(𝑥, 𝑝) 𝑓(𝑥, 𝑝)

∇2𝑉 = 𝜌∇2𝑉 = 𝜌∇2𝑉 = 𝜌∇2𝑉 = 𝜌

08/17/2020 Eric Stern | NUG2020 Lightning Session



The bulk of computing power at the new large facilities will be provided by some kind 

of GPU or other co-processor. Synergia must adapt!

What do we want for an upgraded Synergia?

• Keep broad accessibility across computing platforms.

• Use “standard” languages and programming techniques as much as possible.

• Avoid architecture lock-in for code maintainability and execute-everywhere 

capability.

• Minimize architecture specific code and algorithms.

– (a previous CUDA specific version was unmaintainable and rotted into uselessness)

New systems will not work like the old ones

4 08/17/2020 Eric Stern | NUG2020 Lightning Session



• Part of the Exascale Computing Project (https://kokkos.org).

• Supports both regular CPUs and CPUs with attached co-processors (GPU, etc.) 

employing back-ends, e.g. OpenMP or CUDA.

• Hardware agnostic: supports NVIDIA (now), AMD and Intel GPUs (promised)

– Perlmutter nodes will use the NVIDIA A100 GPU

• Templated C++ library maintained as an open-source repository on Github.

• Abstracts array data as a View that may reside either in host or device memory.

• Application invokes parallel dispatchers that connect to the device specific backend 

to implement parallel operations.

• For Synergia, after initial setup that requires CPU resources, data resides in device 

memory.

5 08/17/2020 Eric Stern | NUG2020 Lightning Session



After about a year…

– Comparison between PowerPC + one 

or four 5120 thread NVIDIA V100 GPUs 

(similar to Summit nodes)

and

– 1 or 8 AMD 32 core Opteron nodes

– Perlmutter will have next generation 

A100 GPUs

Benchmark accelerator simulation results

6 08/17/2020 Eric Stern | NUG2020 Lightning Session



• It took a year of work.

• Some algorithms and operations would not operate efficiently on attached 

processor memory and had to be redesigned for the GPU.

• Some device-specific code was necessary:

– We had to rely on a CUDA specific FFTW implementation for GPUs.

– The Kokkos primitive used for charge deposition is not efficient on CPUs.

Caveats

7 08/17/2020 Eric Stern | NUG2020 Lightning Session



Synergia development was supported by the DOE SciDAC-4 ComPASS project.

Work supported by the Fermi National Accelerator Laboratory, managed and 

operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 

with the U.S. Department of Energy.

We are ready for Perlmutter!!

8 08/17/2020 Eric Stern | NUG2020 Lightning Session


